Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Plant Physiol Biochem ; 205: 108173, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37984021

RESUMO

Arbuscular mycorrhizal (AM) symbiosis can strengthen plant defense against abiotic stress, such as drought, through multiple mechanisms; however, the specialized chemical defenses induced by AM symbiosis are largely unknown. In a pot experiment, licorice (Glycyrrhiza uralensis Fisch.) inoculated with and without arbuscular mycorrhizal fungus Rhizophagus irregularis Schenck & Smith were grown under well-watered or water deficit conditions. Transcriptomic and metabolomic analyses were combined to investigate licorice root specialized metabolism induced by AM symbiosis under drought stress. Results showed that mycorrhizal plants had few dead leaves, less biomass reduction, and less differentially expressed genes and metabolite features in response to drought compared with nonmycorrhizal plants. Transcriptomic and metabolomic data revealed that mycorrhizal roots generally accumulated lignin regardless of the water regime; however, the expression of genes involved in lignin biosynthesis was significantly downregulated by drought stress in mycorrhizal plants. By contrast, AM inoculation significantly decreased specialized metabolites accumulation, including phenolics and flavonoids under well-watered conditions, whereas these decreases turned to be nonsignificant under drought stress. Moreover, these specific phenolics and flavonoids showed significant drought-induced accumulation pattern in mycorrhizal roots. These results highlight that accumulation of specific root phenolics and flavonoids may support the drought tolerance of mycorrhizal plants.


Assuntos
Glycyrrhiza uralensis , Micorrizas , Micorrizas/fisiologia , Glycyrrhiza uralensis/metabolismo , Simbiose/fisiologia , Raízes de Plantas/metabolismo , Flavonoides , Secas , Transcriptoma , Lignina , Água/metabolismo
2.
J Environ Manage ; 348: 119335, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37857212

RESUMO

Addressing the widespread concern of chromium (Cr) pollution, this study investigated its impacts on bacterial communities across eight soil types, alongside the potential Cr transformation-related genes. Utilizing real-time PCR, 16S rRNA gene sequencing and gene prediction, we revealed shifts in bacterial community structure and function at three Cr exposure levels. Our results showed that the bacterial abundance in all eight soil types was influenced by Cr to varying extents, with yellow‒brown soil being the most sensitive. The bacterial community composition of different soil types exhibited diverse responses to Cr, with only the relative abundance of Proteobacteria decreasing with increasing Cr concentration across all soil types. Beta diversity analysis revealed that while Cr concentration impacted the assembly process of bacterial communities to a certain extent, the influence on the compositional structure of bacterial communities was primarily driven by soil type rather than Cr concentration. The study also identified biomarkers for each soil type under three Cr levels, offering a basis for monitoring changes in Cr pollution. By predicting crucial functional genes related to Cr transformation, it was observed that the relative abundance of chrA (chromate transporter) in yellow‒brown soil significantly exceeded that in all other soil types, suggesting its potential for Cr adaptation. The study also revealed correlations among soil physicochemical properties, Cr concentration, and these functional genes, providing a foundation for future research aimed at more precise functional analysis and the development of effective soil remediation strategies.


Assuntos
Cromo , Poluentes do Solo , Cromo/análise , Solo/química , RNA Ribossômico 16S/genética , Bactérias/genética , Proteobactérias/genética , Microbiologia do Solo , Poluentes do Solo/análise
3.
J Fungi (Basel) ; 9(10)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37888254

RESUMO

Arsenic (As) pollution in wetlands, mainly as As(III) and As(V), has threatened wetland plant growth. It has been well documented that arbuscular mycorrhizal (AM) fungi can alleviate As stress in terrestrial plants. However, whether AM fungi can protect natural wetland plants from As stress remains largely unknown. Therefore, three hydroponic experiments were conducted in which Iris tectorum Maxim. (I. tectorum) plants were exposed to As(III) or As(V) stresses, to investigate the effects of mycorrhizal inoculation on As uptake, efflux, and accumulation. The results suggested that short-term kinetics of As influx in I. tectorum followed the Michaelis-Menten function. Mycorrhizal inoculation decreased the maximum uptake rate (Vmax) and Michaelis constant (Km) of plants for As(III) influx, while yielding no significant difference in As(V) influx. Generally, mycorrhizal plants released more As into environments after 72 h efflux, especially under As(V) exposure. Moreover, mycorrhizal plants exhibited potential higher As accumulation capacity, probably due to more active As reduction, which was one of the mechanisms through which AM fungi mitigate As phytotoxicity. Our study has revealed the role of aerobic microorganism AM fungi in regulating As translocation in wetland plants and supports the involvement of AM fungi in alleviating plant As stress in anaerobic wetlands.

4.
Environ Pollut ; 338: 122592, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37741542

RESUMO

Microplastics are emerging pollutants that can adsorb heavy metals and threaten human health through food chain. Recently, there has been increasing interest in understanding the adsorption behavior of heavy metals by microplastics in farmland soil. In particular, arsenic (As), as a carcinogen, has the potential to be adsorbed by soil microplastics. However, the mechanisms and controlling factors of As adsorption by microplastics in farmland soil under natural conditions are still unknown. Here, microplastics and As were respectively added to farmland soils with different physicochemical properties from twelve provinces of China for adsorption experiment. We performed surface analysis of microplastics, quantified As accumulation through quasi-first-order kinetic equation and developed regression models to screen the factors controlling As adsorption. The results showed that the adsorption of As by soil microplastics was a chemical process accompanied by the loss of electrons from oxygen-containing functional groups. Soil cation exchange capacity (CEC) was the main factor controlling the adsorption rate, while soil organic matter (SOM), total nitrogen (TN) and CEC mainly influenced the equilibrium adsorption capacity. This is the first report on microplastic-As adsorption in natural soil, which allows deeper insights into risk assessment, prediction and control of microplastic-As pollution in agricultural soil.


Assuntos
Arsênio , Metais Pesados , Poluentes do Solo , Humanos , Microplásticos/química , Plásticos , Arsênio/análise , Adsorção , Poluentes do Solo/análise , Metais Pesados/análise , Solo/química
5.
Sci Total Environ ; 894: 165023, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37348726

RESUMO

Tropospheric ozone (O3) is a typical air pollutant with harmful effects on plants, whereas arbuscular mycorrhizal (AM) fungi are ubiquitous plant symbionts that enhance plant resistance to various abiotic stresses. However, whether AM symbiosis decreases plant O3 sensitivity and what the underlying mechanisms are remain unclear. In this study, O3-tolerant poplar clone 107 and O3-sensitive poplar clone 546 were used as test plants. An open-top chamber experiment was conducted to investigate the effects of AM inoculation on plant growth and physiological parameters under O3 enrichment. The results showed that O3 enrichment significantly decreased plant biomass and net photosynthetic rate and increased the leaf shedding rate and malondialdehyde concentration of clone 546. Generally, clone 107 was less responsive to O3 enrichment than clone 546 was. Differences in antioxidant enzyme activity, rather than in specific leaf weight or stomatal conductance, were responsible for the differences in O3 sensitivity between the two clones. AM inoculation significantly increased the biomass and decreased the leaf shedding rate and malondialdehyde concentration of clone 107 but had no significant effect on almost all the indexes of clone 546, suggesting a species-specific mycorrhizal effect on plant O3 sensitivity. Mechanistically, AM symbiosis did not significantly affect nutrient uptake, stomatal conductance, or specific leaf weight of poplar but did significantly increase antioxidant enzyme activity. Linear regression analysis of antioxidant enzyme activities and the effect of O3 on growth and physiological parameters showed that AM symbiosis mediated antioxidant enzyme activities to mitigate O3 injury to the two poplar clones. This study improved the understanding of the protective effects of AM fungi on plants against O3 pollution.


Assuntos
Micorrizas , Ozônio , Populus , Antioxidantes/farmacologia , Simbiose , Ozônio/análise , Fotossíntese , Populus/fisiologia , Folhas de Planta/química , Plantas
6.
Sci Total Environ ; 879: 163244, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37004770

RESUMO

Chromium (Cr) contamination has been of great concern in agricultural soil health due to its persistence, toxicity and bioaccumulation. Fungi, as an essential regulator of soil remediation and biochemical processes, had an unclear response to Cr contamination. In this study, the composition, diversity and interaction mechanisms of fungal communities in agricultural soils from ten different provinces of China were investigated in order to elucidate the fungal community response to varying soil properties and Cr concentrations. The results showed that high concentrations of Cr led to substantial alterations in the fungal community composition. The complex soil properties had a far greater impact on the fungal community structure than the single factor of Cr concentration, with soil available phosphorus (AP) and pH being most influential. Function predictions based on FUNGuild indicated that high concentrations of Cr have a significant impact on certain functional groups of fungi, including mycorrhizal fungi and plant saprotroph. The fungal community tended to resist Cr stress by enhancing interactions and clustering among network modules, while generating new keystone taxa. This study allowed insights into the response of soil fungal community to Cr contamination in different agricultural soils from different provinces and provided a theoretical basis for soil Cr ecological risk assessment and the development of bioremediation techniques for Cr-contaminated soils.


Assuntos
Micobioma , Solo , Solo/química , Cromo/análise , Agricultura , Poluição Ambiental , Fungos
7.
Fish Shellfish Immunol ; 135: 108659, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36868535

RESUMO

Vibrio mimicus (V. mimicus) is a pathogenic bacterium that causes diseases in humans and various aquatic animals. A particularly efficient way to provide protection against V. mimicus is through vaccination. However, there are few commercial vaccines against V. mimics, especially oral vaccines. In our study, two surface-display recombinant Lactobacillus casei (L. casei) Lc-pPG-OmpK and Lc-pPG-OmpK-CTB were constructed using L. casei ATCC393 as an antigen delivery vector, outer membrane protein K (OmpK) of V. mimicus as an antigen, and cholera toxin B subunit (CTB) as a molecular adjuvant; furthermore, the immunological effects of recombinant L.casei in Carassius auratus (C. auratus) were assessed. The results indicated that oral recombinant L.casei Lc-pPG-OmpK and Lc-pPG-OmpK-CTB stimulated higher levels of serum-specific immunoglobulin M (IgM) and increased the activity of acid phosphatase (ACP), alkaline phosphatase (AKP), superoxide dismutase (SOD), lysozyme (LYS), lectin, C3, and C4 in C. auratus, compared with control groups (Lc-pPG group and PBS group). Furthermore, the expression of interleukin-1ß (IL-1ß), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α), and transforming growth factor-ß (TGF-ß) in the liver, spleen, head kidney, hind intestine and gills of C. auratus was significantly increased, compared with that in the controls. These results demonstrated that the two recombinant L. casei strains could effectively trigger humoral and cellular immunity in C. auratus. In addition, two recombinant L.casei strains were able to survive and colonize the intestine of C. auratus. Importantly, after being challenged with V. mimicus, C. auratus fed Lc-pPG-OmpK and Lc-pPG-OmpK-CTB exhibited greater survival rates than the controls (52.08% and 58.33%, respectively). The data showed that recombinant L. casei could elicit a protective immunological response in C. auratus. The effect of the Lc-pPG-OmpK-CTB group was better than that of the Lc-pPG-OmpK group, and Lc-pPG-OmpK-CTB was found to be an effective candidate for oral vaccination.


Assuntos
Lacticaseibacillus casei , Vibrio mimicus , Humanos , Animais , Lacticaseibacillus casei/genética , Carpa Dourada , Vacinação , Adjuvantes Imunológicos , Proteínas Recombinantes
8.
Mar Pollut Bull ; 187: 114521, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36621299

RESUMO

Human vibriosis, caused by pathogenic Vibrio spp., such as Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnificus, has been increasing worldwide, mediated by increasing consumption of seafood. The present study was conducted to examine the global prevalence of V. vulnificus, V. parahaemolyticus and V. cholerae in fishes. We searched PubMed, Web of Science, Scopus, and CNKI for peer-reviewed articles and dissertations prior to December 31, 2021. A total of 24,831 articles were retrieved, and 82 articles contained 61 fish families were included. The global pooled prevalence of V. cholerae, V. parahaemolyticus and V. vulnificus in fishes was 9.56 % (95 % CI: 2.12-20.92), 24.77 % (95 % CI: 17.40-32.93) and 5.29 % (95 % CI: 0.38-13.61), respectively. Subgroup and meta-regression analyses showed that study-level covariates, including temperature, country, continent, origin and detection methods partly explained the between-study heterogeneity. These heterogeneities were underpinned by differences of the three Vibrio spp. in fishes at geographical and climatic scales. These results reveal a high global prevalence of pathogenic Vibrio spp. in fishes and highlight the need for implementation of more effective prevention and control measures to reduce food-borne infection in humans.


Assuntos
Vibrioses , Vibrio cholerae , Vibrio parahaemolyticus , Vibrio , Animais , Humanos , Saúde Pública , Prevalência , Alimentos Marinhos , Vibrioses/epidemiologia , Vibrioses/veterinária , Peixes
9.
Ann N Y Acad Sci ; 1520(1): 115-126, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36477764

RESUMO

Aeromonas veronii (A. veronii) is an important zoonotic pathogen that causes substantial economic losses in aquaculture. In this study, we aimed to develop a safe and effective immune enhancer to protect Carassius auratus (C. auratus) from A. veronii infections. With recognized safety, lactic acid bacteria are used as antigen delivery vehicles to present antigens. Lipopolysaccharide (LPS), a protective antigen, induces immune responses in animals. Therefore, we created recombinant Lactobacillus plantarum (L. plantarum) with surface-displayed LPS of A. veronii TH0426 and tested its effects on immune responses in C. auratus. The results showed that recombinant L. plantarum Lp-pPG-611.1-LPS, as an immune enhancer, could improve the innate and adaptive immune responses of C. auratus when it was added to the diet of C. auratus. The challenge test showed that the survival rate of C. auratus fed with L. plantarum Lp-pPG-611.1-LPS was higher than that of the control groups, indicating that the recombinant L. plantarum Lp-pPG-611.1-LPS increased the resistance of C. auratus to A. veronii infection. The present results provide a theoretical basis for the development of recombinant L. plantarum Lp-pPG-611.1-LPS as an immune enhancer in aquaculture.


Assuntos
Aeromonas veronii , Carpa Dourada , Animais , Lipopolissacarídeos , Sequências Reguladoras de Ácido Nucleico
10.
New Phytol ; 237(1): 279-294, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36177721

RESUMO

Nitrogen (N) enrichment poses threats to biodiversity and ecosystem stability, while arbuscular mycorrhizal (AM) fungi play important roles in ecosystem stability and functioning. However, the ecological impacts, especially thresholds of N enrichment potentially causing AM fungal community shifts have not been adequately characterized. Based on a long-term field experiment with nine N addition levels ranging from 0 to 50 g N m-2 yr-1 in a temperate grassland, we characterized the community response patterns of AM fungi to N enrichment. Arbuscular mycorrhizal fungal biomass continuously decreased with increasing N addition levels. However, AM fungal diversity did not significantly change below 20 g N m-2 yr-1 , but dramatically decreased at higher N levels, which drove the AM fungal community to a potentially unstable state. Structural equation modeling showed that the decline in AM fungal biomass could be well explained by soil acidification, whereas key driving factors for AM fungal diversity shifted from soil nitrogen : phosphorus (N : P) ratio to soil pH with increasing N levels. Different aspects of AM fungal communities (biomass, diversity and community composition) respond differently to increasing N addition levels. Thresholds for substantial community shifts in response to N enrichment in this grassland ecosystem are identified.


Assuntos
Micobioma , Micorrizas , Micorrizas/fisiologia , Nitrogênio , Ecossistema , Pradaria , Microbiologia do Solo , Solo/química , China
11.
Foods ; 11(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36429201

RESUMO

The sustained growth of global meat consumption incentivized the development of the meat substitute industry. However, long-term global commercialization of meat substitutes faces challenges that arise from technological innovation, limited consumer awareness, and an imperfect regulatory environment. Many important questions require urgent answers. This paper presents a review of issues affecting meat substitute manufacturing and marketing, and helps to bridge important gaps which appear in the literature. To date, global research on meat substitutes focuses mainly on technology enhancement, cost reduction, and commercialization with a few studies focused on a regulatory perspective. Furthermore, the studies on meat substitute effects on environmental pollution reduction, safety, and ethical risk perception are particularly important. A review of these trends leads to conclusions which anticipate the development of a much broader market for the meat substitute industry over the long term, the gradual discovery of solutions to technical obstacles, upgraded manufacturing, the persistent perception of ethical risk and its influence on consumer willingness to accept meat substitutes, and the urgent need for constructing an effective meat substitute regulatory system.

12.
Front Oncol ; 12: 908841, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35982957

RESUMO

Background: Clinical benefits of neoadjuvant Anlotinib for locally advanced esophageal squamous cell carcinoma (ESCC) remains unclear. This study evaluated the efficacy and safety of neoadjuvant Anlotinib plus chemotherapy followed by minimally invasive esophagectomy (MIE) for the treatment of patients with locally advanced ESCC. Methods: Patients with locally advanced ESCC were randomly assigned to neoadjuvant Anlotinib combined with chemotherapy (Anlotinib group) or neoadjuvant chemoradiotherapy alone (nCRT group) with an allocation ratio of 1:1. The primary endpoint was the R0 surgical resection rate. Secondary endpoints included postoperative pathologic stage, complete response (CR) rate, and safety. Safety was assessed by adverse events (AEs) and postoperative complications. Results: From August 2019 to August 2021, 93 patients were assigned to the nCRT or Anlotinib group. Of the 93 patients, 79 underwent MIE and were finally included in the per-protocol set (nCRT group: n=39; Anlotinib group: n=40). The R0 resection rate was 97.4% for nCRT versus 100.0% for Anlotinib group (p>0.05). Compared with the nCRT group, patients in the Anlotinib group had shorter total operation duration (262.2 ± 39.0 vs. 200.7 ± 25.5 min, p=0.010) and less blood loss (161.3 ± 126.7 vs. 52.4 ± 39.3 mL, p<0.001). No significant differences were found in the postoperative pathologic stage between the Anlotinib group and nCRT group (all p>0.05). Besides, the incidences of AEs (80.0% vs. 92.3%) and postoperative complications (22.5% vs. 30.8%) were similar between the two groups (all p>0.05). Conclusions: Neoadjuvant Anlotinib plus chemotherapy had a similar safety profile and pathologic response, but better surgical outcomes than nCRT for locally advanced ESCC.

13.
Sci Total Environ ; 851(Pt 1): 158168, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988599

RESUMO

There is a growing concern regarding the potential adverse impact of Toxoplasma gondii contamination of the marine environment on marine wildlife and public health. Terrestrial runoff is a significant route for dissemination of T. gondii oocysts from land to sea. Yet, the influence of terrestrial runoff on T. gondii prevalence in marine animals in China is largely unknown. To address this concern, we examined the presence of T. gondii in marine oysters Crassostrea spp., rockfish Sebastes schlegelii (S. schlegelii), fat greenling fish Hexagrammos otakii (H. otakii), and Asian paddle crab Charybdis japonica (C. japonica) using a PCR assay targeting T. gondii B1 gene. A total of 1920 samples were randomly collected, in Jan-Dec 2020, from terrestrial runoff areas (TRA, TRB, and TRC) and non-terrestrial runoff area (Grape bay) in Weihai, China. T. gondii prevalence in TRB and TRC was 6.04 % and 5.83 %, respectively, which was higher than 2.29 % detected in the non-terrestrial runoff area. The highest prevalence was detected in Crassostrea spp., and a correlation was observed between T. gondii prevalence and weight of Crassostrea spp. The temperature, but not precipitation, significantly correlated with T. gondii prevalence. Understanding the fate of T. gondii delivered to oceans by terrestrial runoff is critical for predicting future disease risks for marine wildlife and humans.


Assuntos
Toxoplasma , Animais , Animais Selvagens , Organismos Aquáticos , Humanos , Oceanos e Mares , Oocistos
14.
Cancer Cell Int ; 22(1): 214, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35706026

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is the leading cause of cancer-related death worldwide with a poor prognosis. Given that DEPDC1B plays a key role in multiple cancers, the role of this molecule in ESCC was explored to identify potential targets for ESCC patients. METHOD: The expression level of DEPDC1B in ESCC was revealed based on the TCGA database and immunohistochemical experiments on clinical tissues. The correlation between DEPDC1B and survival of ESCC patients was analyzed by Kaplan-Meier method. Small hairpin RNA (shRNA)-mediated silencing of DEPDC1B expression in ESCC cells and performed a series of in vitro and in vivo functional validations. RESULT: DEPDC1B was overexpressed in ESCC. High expression of DEPDC1B was significantly negatively correlated with overall survival in patients with ESCC. Moreover, knockdown of DEPDC1B inhibited ESCC cell proliferation, clone formation, migration, tumor formation and promoted apoptosis. Furthermore, knockdown of DEPDC1B leaded to significant downregulation of GABRD in ESCC cells. Meanwhile, GABRD expression was upregulated in ESCC, and its silencing can inhibit the proliferation and migration of the tumor cells. Interestingly, there was a protein interaction between DEPDC1B and GABRD. Functionally, GABRD knockdown partially reversed the contribution of DEPDC1B to ESCC progression. In addition, GABRD regulated ESCC progression may depend on PI3K/AKT/mTOR signaling pathway. CONCLUSION: DEPDC1B collaborated with GABRD to regulate ESCC progression, and inhibition of this signaling axis may be a potential therapeutic target for ESCC.

15.
Front Plant Sci ; 13: 876192, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720585

RESUMO

Phosphorus (P) is one of the macronutrients limiting plant growth. Plants regulate carbon (C) allocation and partitioning to cope with P deficiency, while such strategy could potentially be influenced by plant growth stage and arbuscular mycorrhizal (AM) symbiosis. In a greenhouse pot experiment using licorice (Glycyrrhiza uralensis) as the host plant, we investigated C allocation belowground and partitioning in roots of P-limited plants in comparison with P-sufficient plants under different mycorrhization status in two plant growth stages. The experimental results indicated that increased C allocation belowground by P limitation was observed only in non-AM plants in the early growth stage. Although root C partitioning to secondary metabolites (SMs) in the non-AM plants was increased by P limitation as expected, trade-off patterns were different between the two growth stages, with C partitioning to SMs at the expense of non-structural carbohydrates (NSCs) in the early growth stage but at the expense of root growth in the late growth stage. These changes, however, largely disappeared because of AM symbiosis, where more root C was partitioned to root growth and AM fungus without any changes in C allocation belowground and partitioning to SMs under P limitations. The results highlighted that besides assisting with plant P acquisition, AM symbiosis may alter plant C allocation and partitioning to improve plant tolerance to P deficiency.

16.
J Hazard Mater ; 436: 129113, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35580502

RESUMO

Nickel (Ni) contamination imposes deleterious effects on the stability of soil ecosystem. Soil fungal community as a crucial moderator of soil remediation and biochemical processes has attracted more and more research interests. In the present study, soil fungal community composition and diversity under long-term Ni contamination were investigated and fungal interaction networks were built to reveal fungal co-occurrence patterns. The results showed that moderate Ni contamination significantly increased fungal diversity and altered fungal community structure. Functional predictions based on FUNGuild suggested that the relative abundance of arbuscular mycorrhizal fungi (AMF) significantly increased at moderate Ni contamination level. Ni contamination strengthened fungal interactions. Keystone taxa at different Ni contamination levels, such as Penicillium at light contamination, were identified, which might have ecological significance in maintaining the stability of fungal community to Ni stress. The present study provided a deeper insight into the effect of long-term Ni contamination on fungal community composition and co-occurrence patterns, and was helpful to further explore ecological risk of Ni contamination in cultivated field.


Assuntos
Micobioma , Micorrizas , Ecossistema , Fungos , Níquel/toxicidade , Solo/química , Microbiologia do Solo
17.
Microb Pathog ; 167: 105559, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35568093

RESUMO

With the aim to discover novel lactic acid bacteria and Bacillus strains from fish as potential probiotics to replace antibiotics in aquaculture, the present study was conducted to isolate lactic acid bacteria and Bacillus from intestinal tract of healthy crucian carp (Carassiu auratus) and largemouth bass (Micropterus salmoides) and evaluate their resistance against Aeromonas veronii. Based on the evaluation of antibacterial activity and tolerance test, one strain of lactic acid bacteria (Weissella cibaria C-10) and one strain of Bacillus (Bacillus amyloliquefaciens T-5) with strong environmental stability were screened out. The safety evaluation showed that these two strains were non-toxic to crucian carp and were sensitive to most antibiotics. In vivo study, the crucian carps were fed a basal diet supplemented with W. cibaria C-10 (C-10), B. amyloliquefaciens T-5 (T-5) and W. cibaria C-10 + B. amyloliquefaciens T-5 (C-10+T-5), respectively, for 5 weeks. Then, various immune parameters were measured at 35 days of post-feeding. Results showed both probiotics could improve the activities of related immune enzymes, immune factors and non-specific immune antibodies in blood and organs (gill, gut, kidney, liver, and spleen) of crucian carp in varying degrees. Moreover, after 7 days of challenge experiment, the survival rates after challenged with A. veronii of W. cibaria C-10 (C-10), B. amyloliquefaciens T-5 (T-5) and W. cibaria C-10 + B. amyloliquefaciens T-5 (C-10+T-5) supplemented groups to the crucian carps were 20%, 33% and 22%, respectively. Overall, W. cibaria C-10 and B. amyloliquefaciens T-5 could be considered to be developed into microecological preparations for the alternatives of antibiotics in aquaculture.


Assuntos
Bacillus amyloliquefaciens , Bacillus , Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Probióticos , Aeromonas veronii , Animais , Antibacterianos/farmacologia , Suplementos Nutricionais , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Weissella
18.
J Fungi (Basel) ; 8(5)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628678

RESUMO

Arbuscular mycorrhizal (AM) fungi can form mutual symbiotic associations with most terrestrial plants and improve the resistance of host plants against pathogens. However, the bioprotection provided by AM fungi can depend on the host-fungus combinations. In this study, we unraveled the effects of pre-inoculation with AM fungus Rhizophagus irregularis on plant resistance against the hemibiotrophic fungal pathogen Fusarium oxysporum in jasmonate (JA) biosynthesis mutant tomato, suppressor of prosystemin-mediated responses8 (spr8) and the wild type Castlemart (CM). Results showed that R. irregularis colonization in CM plants significantly decreased the disease index, which was not observed in spr8 plants, suggesting that the disease protection of AM fungi was a plant-genotype-specific trait. Inoculation with R. irregularis significantly increased the shoot dry weight of CM plants when infected with F. oxysporum, with increased plant P content and net photosynthetic rate. Induced expression of the JA synthesis genes, including allene oxide cyclase gene (AOC) and lipoxygenase D gene (LOXD), and increased activities of polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL) were recorded in mycorrhizal CM plants infected with F. oxysporum, but not in spr8 plants. Thus, mycorrhiza-induced resistance (MIR) to fungal pathogen in tomato was highly relevant to the JA signaling pathway.

19.
Mycorrhiza ; 32(1): 33-43, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34981189

RESUMO

Enriched surface ozone (O3) can impose harmful effects on plants. Conversely, arbuscular mycorrhizal (AM) symbiosis can enhance plant tolerance to various environmental stresses and facilitate plant growth. The interaction of AM fungi and O3 on plant performance, however, seldom has been investigated. In this study, alfalfa (Medicago sativa L.) was used as a test plant to study the effects of O3 and AM symbiosis on plant physiology and growth under two O3 levels (ambient air and elevated O3 with 60 nmol·mol-1 O3 enrichment) and three AM inoculation treatments (inoculation with exogenous or indigenous AM fungi and non-inoculation control). The results showed that elevated O3 decreased plant net photosynthetic rate and biomass, and increased malondialdehyde concentration, while AM inoculation (with both exogenous and indigenous AM fungi) could promote plant nutrient acquisition and growth irrespective of O3 levels. The positive effects of AM symbiosis on plant nutrient acquisition and antioxidant enzyme (superoxide dismutase and peroxidase) activities were most likely offset by increased stomatal conductance and O3 intake. As a result, AM inoculation and O3 generally showed no significant interactions on plant performance: although elevated O3 did not diminish the beneficial effects of AM symbiosis on alfalfa plants, AM symbiosis also did not alleviate the harmful effects of O3 on plants.


Assuntos
Micorrizas , Ozônio , Medicago sativa , Micorrizas/química , Ozônio/análise , Ozônio/farmacologia , Fósforo , Raízes de Plantas/química , Solo , Simbiose
20.
New Phytol ; 234(6): 2003-2017, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34449895

RESUMO

Climate extremes pose enormous threats to natural ecosystems. Arbuscular mycorrhizal (AM) fungi are key plant symbionts that can affect plant community dynamics and ecosystem stability. However, knowledge about how AM fungal communities respond to climate extremes in natural ecosystems remains elusive. Based on a grassland extreme drought experiment in Inner Mongolia, we investigated the response of AM fungal communities to extreme drought in association with plant communities. The experiment simulated two types of extreme drought (chronic/intense) of once-in-20-year occurrence. AM fungal richness and community composition exhibited high sensitivity to extreme drought and were more sensitive to intense drought than chronic drought. This community sensitivity (i.e. decline in richness and shifts in community composition) of AM fungi can be jointly explained by soil moisture, plant richness, and aboveground productivity. Notably, the robustness of the plant-AM fungal community co-response increased with drought intensity. Our results indicate that AM fungal communities are sensitive to climate extremes, and we propose that the plant community mediates AM fungal community responses. Given the ubiquitous nature of AM associations, their climate sensitivity may have profound consequences on plant communities and ecosystem stability under climate change.


Assuntos
Micorrizas , Secas , Ecossistema , Fungos , Pradaria , Micorrizas/fisiologia , Plantas/microbiologia , Solo , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...